

Fibra Óptica: La Solución desde la LAN hasta el DC

Pedro Lerma, RCDD/DCDC/NTS/OSP Gerente de Ventas Redes Empresariales México lermap@corning.com

Nueva manera de diseñar la infraestructura de la red LAN

"Si buscas resultados distintos, no hagas siempre lo mismo" Albert Einstein

Ambientes colaborativos

Fuerza de Trabajo sin "ataduras"

Internet de las cosas (IoT)

Transmisiones en línea (Streaming)

5G

Realidad Aumentada y Virtual Servicio de Radio de Banda Ciudadana (CBRS)

Aplicaciones
Power over
Ethernet (PoE)

BYO device

LEED

Edificios Inteligentes Espacios de Trabajo compartidos

2021

3.6B loT dispositivos conectados

Transmisiones en línea (Streaming)

5G

Realidad Aumentada y Virtual Servicio de Radio de Banda Ciudadana (CBRS)

Aplicaciones
Power over
Ethernet (PoE)

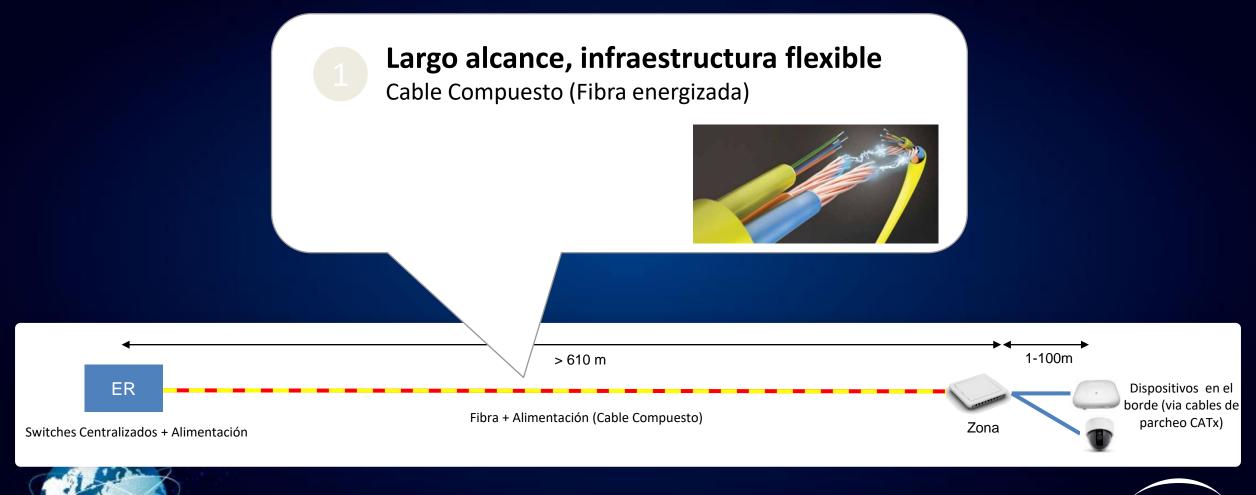
2025

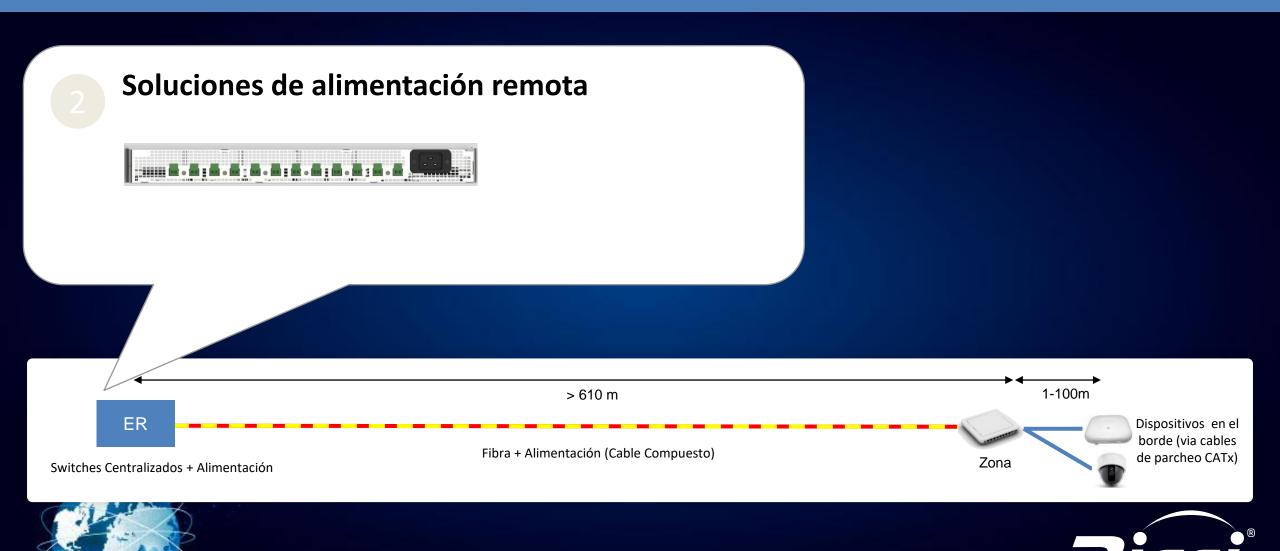
80B IoT dispositivos conectados

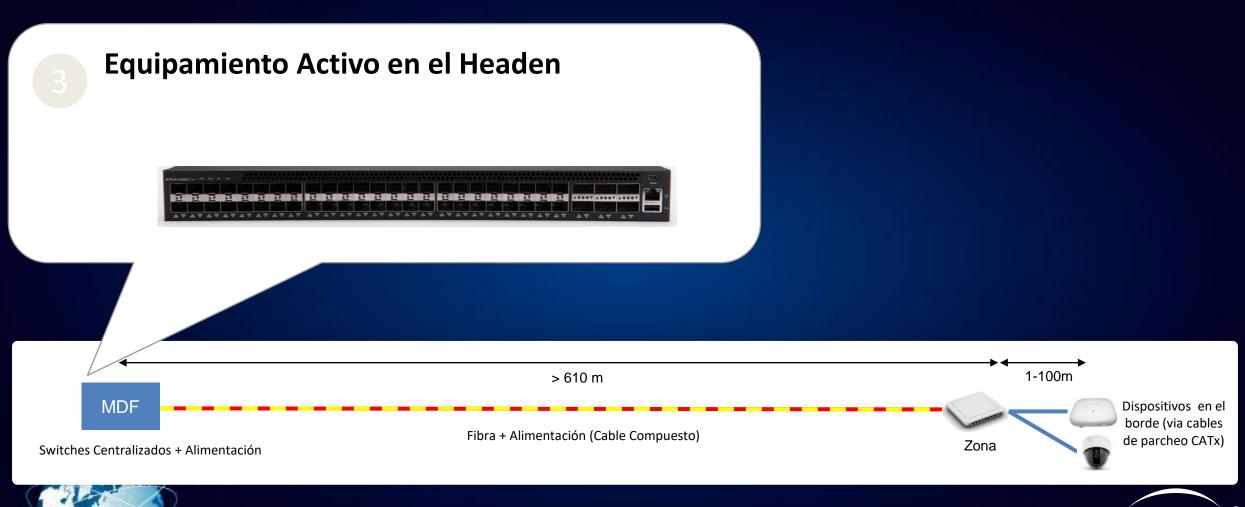
s Eléctricas

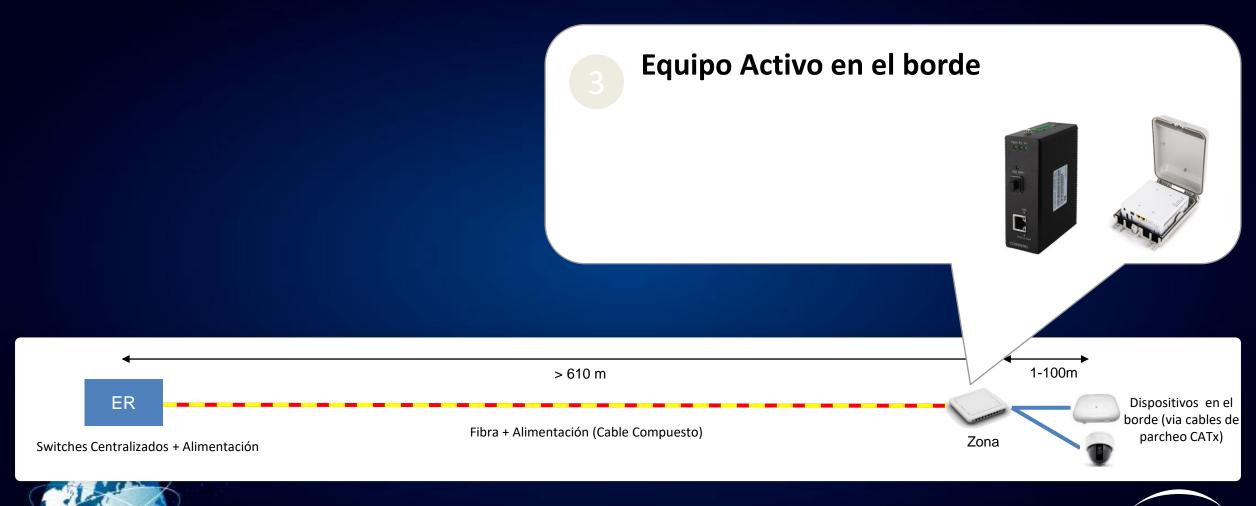
152,000 por minuto

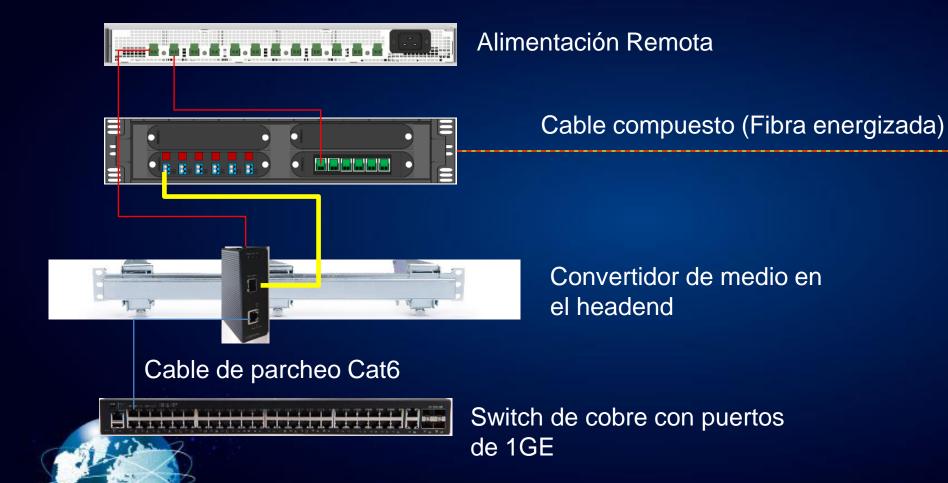
Ciudades Inteligentes


Multiples capas de infraestructura de una sola aplicación

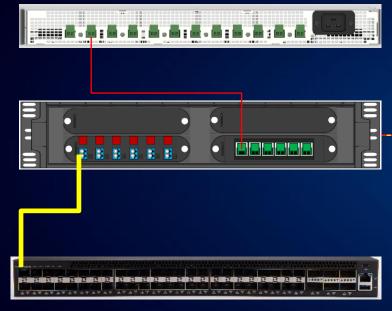

Una sola infraestructura para todas las aplicaciones







Interoperabilidad con switches de cobre existentes



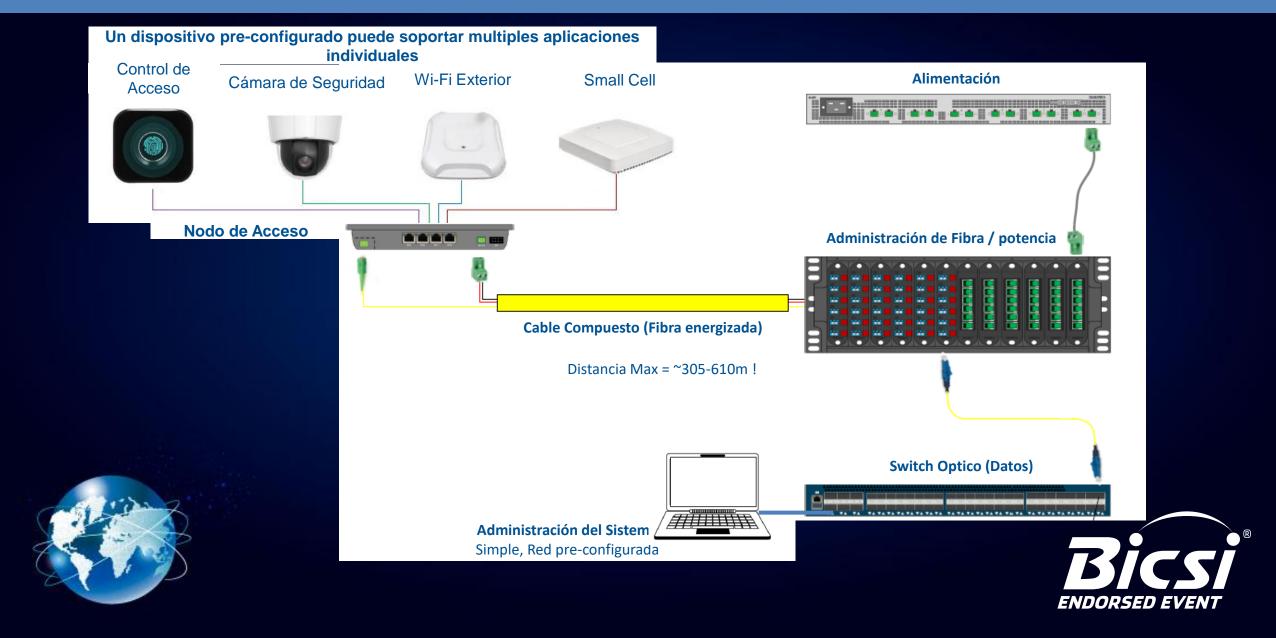
Convertidor de medio & gabinete en el borde

Interoperabilidad con switches de fibra

Alimentación Remota

Cable compuesto (Fibra energizada)

Switch de Fibra switch con puertos de 10GE SFP+



Convertidor de medio & gabinete en el borde

Ofrezca una solución de punta-a-punta para aplicaciones sencillas

Arquitectura de largo alcance para la red LAN

Switches ópticos 1G/10G/40G

PoE/PoE+/PoE++

Portafolio completo de SFP's

Amplio portafolio de cables compuestos (Fibra Energizada)

Alcance hasta 610 m

1-24 F / 2-12 Cu

12-20 AWG

Reel-in-a-Box

Dispositivos en el Borde – Optico Ethernet c/ PoE

Nodos de acceso definidos por software de modo dual

Convertidor de Medio 10G HPoE

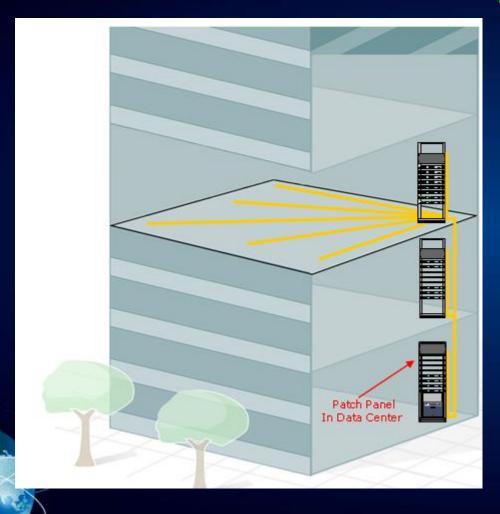
ENDORSED EVENT

Bajo voltaje, Soluciones de Energía Inteligente

F.A.: 0-1200W, redundante, 24V o 56V

Cableado Estructurado

Administración de Fibra/Cobre


Conectividad & Gabinetes

Software de Orquestación Avanzada del tipo SDN (Software Defined Network)

Diseño Tradicional Ethernet

REQUIERE EN LOS CUARTOS

Diseño con Fibra óptica

REQUIERE EN LOS CUARTOS

Energía Eléctrica

HVAC

RacK o Gabinete

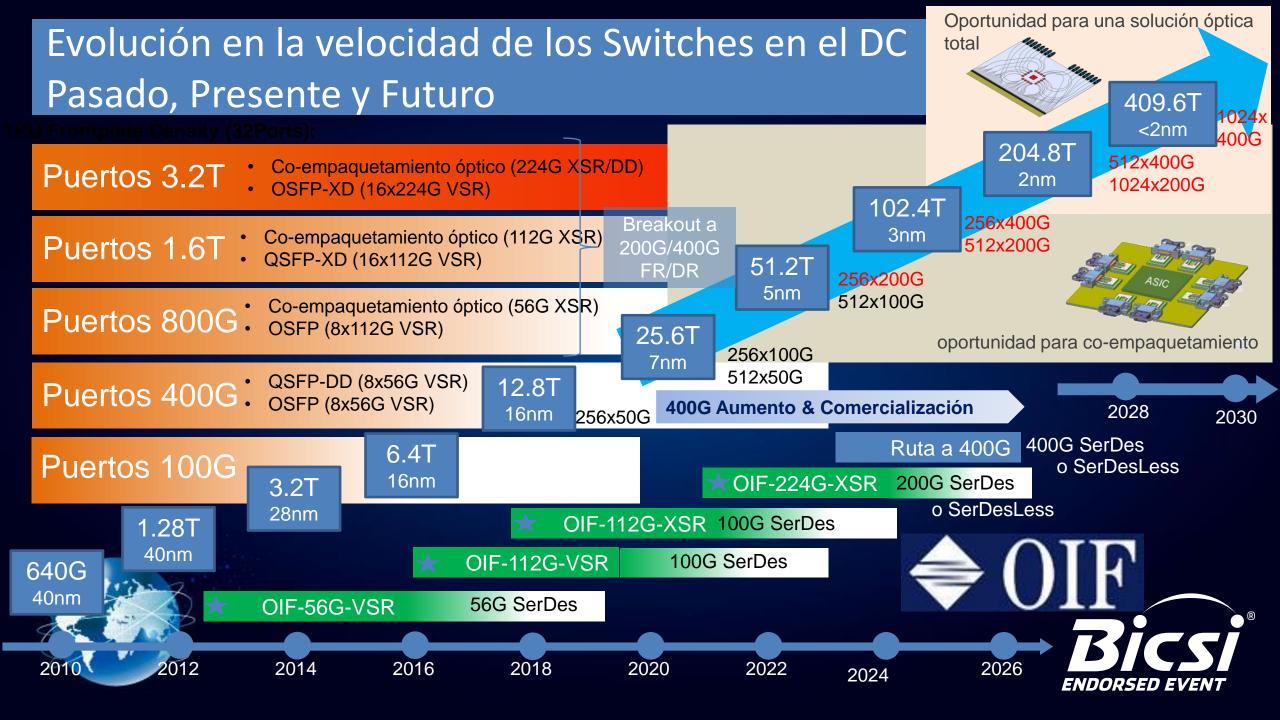
UPS

Switches Workgroup

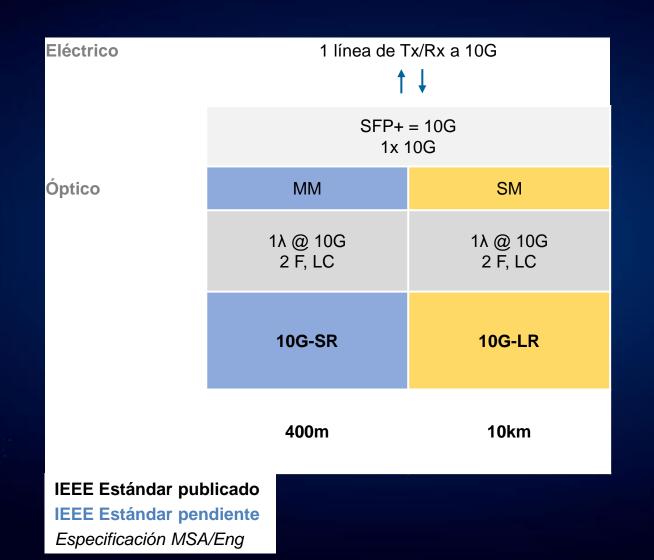
Cableado de Home-run

Router en Data Center

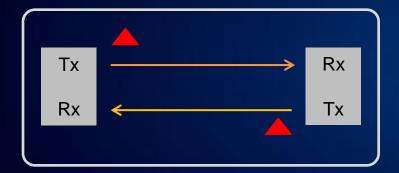
Ventajas


- Datos con ancho de banda prácticamente ilimitado
- Trasmisiones más rápidas
- Medio de transmisión inmune a interferencias electromagnéticas y de RF
- Un solo medio para llevar energía y datos
- Cables de menor diámetro y de menor peso
- Se puede utilizar protocolo Ethernet o protocolo GPON
- Se pueden alimentar dispositivos mucho más allá de los 100 m
- Se reducen los cuartos de Telecomunicaciones
- Se puede reducir el costo de la red y su infraestructura
- Reducción en el diámetro del medio de transmisión (70-90%)
- Reducción en el peso del medio de transmisión (70-90%)
- Reducción en el número de cables utilizados (50-90%)
 - Se pueden utilizar rutas de menor diámetro (hasta un 76% de menor diámetro en Conduit)

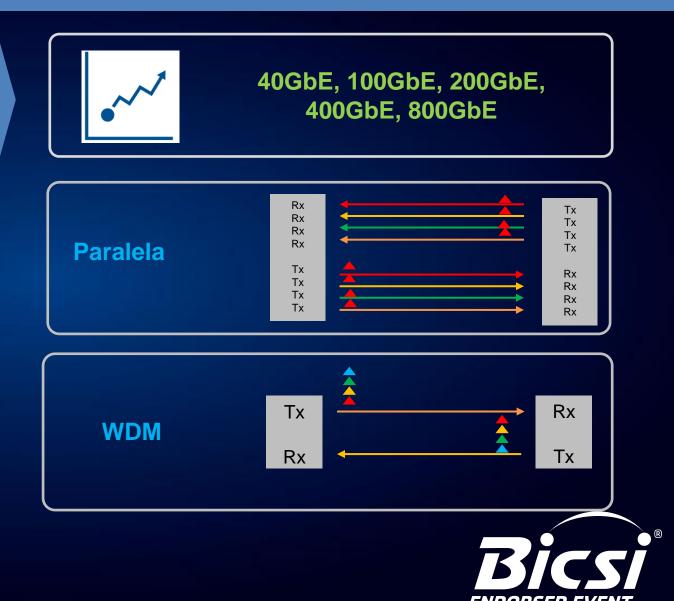
Centro de Datos, una red en evolución


Transceiver Roadmap/ Port Breakout/ VSFFC

SFP+ Domina 10G en el Data Center



La ruta óptica a velocidades mayores tiene un camino divergente



Canal sencillo, trasmisión serial

Tradicionalmente se ha podido aumentar el Bit rate dentro de un solo canal (encender y apagar la luz más rápido)

40G QSFP+ es una tecnología madura

Eléctrico

4 líneas de Tx/Rx cada una a 10G

QSFP+ = 40G $4x \ 10G$

Óptico

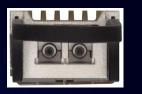
	WDM	Par	allel	
N	1M	SM	MM	SM
2λ @ 20G 2 F, LC	4λ @ 10G 2 F, LC	4λ @ 10G 2 F, LC	1λ @ 10G 8 F, MTP	1λ @ 10G 8 F, MTP
40G-BiDi	40G-SWDM4	40G-LR4 40G-LR4L	40G-SR4 40G-eSR4	40G-PLR4 40G-PLRL4
150m	350m	10km 2km	150m <i>400m</i>	500m 1km

IEEE Estándar publicado
IEEE Estándar pendiente
Especificación MSA/Eng

100G QSFP28 es una tecnología madura

Eléctrico

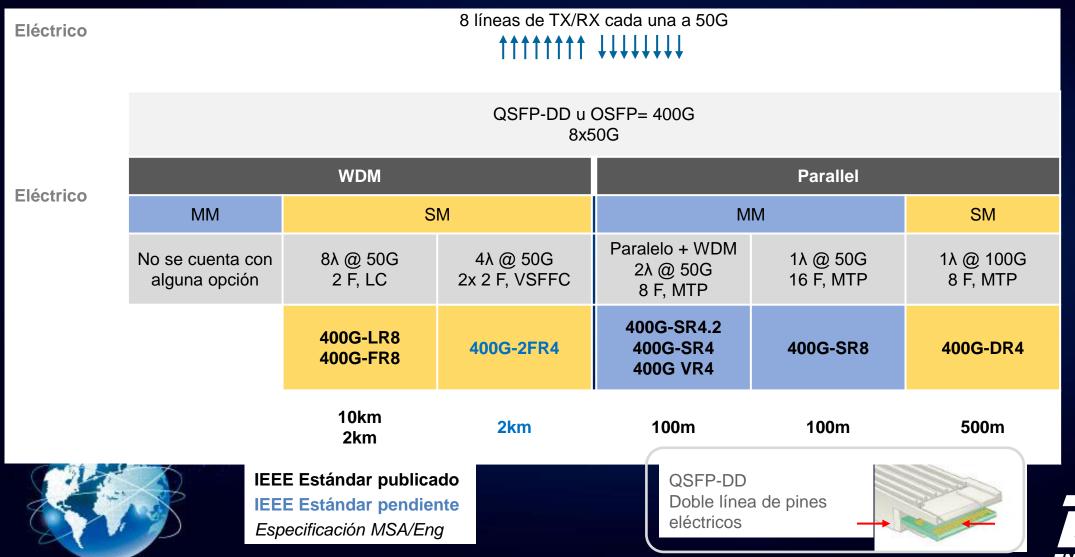
4 líneas de TX/RX cada una a 25G


QSFP28 = 100G $4x \ 25G$

Óptico

	Duplex	Par	allel	
M	1M	SM	MM	SM
2λ @ 50G 2 F, LC	4λ @ 25G 2 F, LC	4λ @ 25G 2 F, LC	1λ @ 25G 8 F, MTP	1λ @ 25G 8 F, MTP
100G-BiDi 100G SR 100G VR	100G-SWDM4	100G-LR4 100G DR 100G-FR4 100G-CWDM4	100G-SR4 100G-eSR4	100G-PSM4
100m	100m	10km 2km 2km	100m 300m	500m

IEEE Estándar publicado
IEEE Estándar pendiente
Especificación MSA/Eng



RUTA PARA ETHERNET A 400G/800G

400G utiliza Transceivers QSFP-DD/ OSFP con interfaces de 8F MTP o LC duplex como opciones principales, también se tiene la opción de interfaces de 16F MPO y SN/ MDC

Un vistazo a los estándares – 100G por lambda sobre MM

-400GBase SR4/800GBase SR8 son solamente a 850nm, OM3 tiene un objetivo de 60M, OM4/OM5 tiene un objetivo 100M

La Fuerza de Taréa de Fibra de Corto Alcance IEEE 802.3db ha definido una especificación de capa física que admite 100G de trasmisión por línea sobre pares de fibra **OM3/OM4**.

Parámetro	Objetivo a alcanzar A			Objetivo a alcanzar B			
Descripción	100GBase-VR 200GBase-VR2 400GBase-VR4			100GBase-SR 200GBase-SR2 400GBase-SR4			
Ancho spectral RMS (max)	0.65nm			0.6nm			
Tipo de Fibra	OM3 OM4 OM5			OM3	OM4	OM5	
EMB a 850nm (MHz.km)	2000 4700			2000	47	00	
Distancia de operación (m)	0.5-30	0.5-30 0.5-30			0.5-	100	

800G utiliza Transceivers QSFP-DD/ OSFP con Desarrollos iniciales, en su mayoría, de 2x400G u 8x100G

Eléctrico

8 líneas de TX/RX cada una a 100G

QSFP-DD u OSFP= 800G 8x100G

QSFP-DD800 :::

E	é	C	t	r	İ	C	0

	WDM		Par	allel
MM	S	М	ММ	SM
No se cuenta con alguna opción	8λ @ 100G 2 F, LC	4λ @ 100G 2x 2 F, VSFCC	1λ @ 100G 16 F, MTP	1λ @ 100G 16 F, MTP
	800G-LR8 800G-FR8	800G-2LR4 800G-2FR4	800G-SR8 800G-VR8 2VR4 (30m) 2SR4 (100m) 800G BiDi (8F)	800G-DR8 800G-DR8+ 2DR4 800G DR4
	10km	10km	100m	500 m

2km

IEEE Estándar publicado
IEEE Estándar pendiente
Especificación MSA/Eng

2km

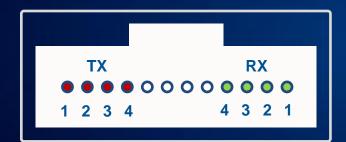
Desarrollo futuro de una Lambda a 200G podría implementar versiones de WDM SMF 800G-LR4, 800G-FR4 y paralela a 800G-DR4

50m

2km

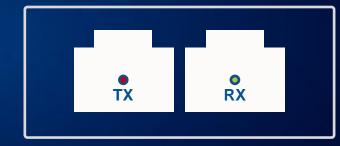
ROMPIMIENTO DE PUERTOS (PORT BREAKOUT)

¿Qué es el rompimiento de puertos? ¿Porqué son tan populares las interfaces de 8F MTP?


Rompimiento de Puerto

=

Desagregación de Puertos


1λ @ 10G por fibra

1x 40Gbs 1x 100Gbs 1x 400Gbs

En lugar de

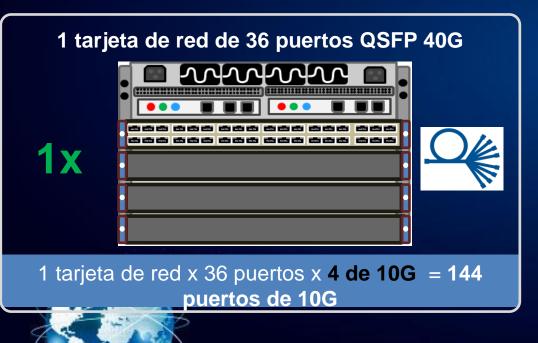
1λ @ 10G por fibra

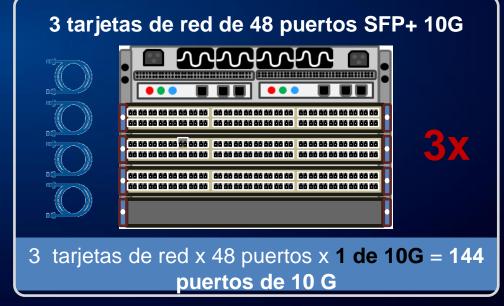
4x 10Gbs 4x 25Gbs 4x 100Gbs

Densidad

Costo

Potencia




400G

Beneficios del Rompimiento de Puertos

 10G 25G 4X 100G

Los puertos se pueden "romper" en sub velocidades individuales, lo que llamamos aplicación de rompimiento de puertos

Costo

Beneficios del Rompimiento de Puertos

Rompimiento de 40G a 4x10G Multimodo		10G Duplex Multimodo	
Tarjeta con puertos de 40G	36	Tarjeta con puertos de 10G	48
Número de 10G soportadas (40G/10G) x 36	144	Número de 10G soportadas(10G/10G) x 48	48
Número de tarjetas para tener 144 puertos x 10G	1	Número de tarjetas para tener 144 puertos x 10G	3
Costo de 40G-SR4 TX/RX	\$ 1,000	Costo de 10G-SR TX/RX	\$ 500
Inversión en Transceivers	\$ 36,000	Inversión en Transceivers	\$ 72,000
Ahorro	50%		
Rompimiento de 100G a 4x25G Multimo	odo	25G Duplex Multimodo	
Tarjeta con puertos de 100G	36	Tarjeta con puertos de 25G	48
Número de 100G soportadas (100G/25G) x 36	144	Número de 25G soportadas (25G/25G) x 48	48
Número de tarjetas para tener 144x 25G ports	1	Número de tarjetas para tener 144x 25G ports	3
Costo de 100G-SR4 TX/RX	\$ 2,500	Costo de 25G-SR TX/RX	\$ 800
Inversión en Transceivers	\$ 90,000	Inversión en Transceivers	\$ 115,200
Ahorro	22%		
Rompimiento de 400G a 4x100G Mono-N	lodo	100G Duplex Mono-Modo	
Tarjeta con puertos de 400G	36	Tarjeta con puertos de 100G	48
Número de 100G soportadas (400G/100G) x 36	144	Número de 100G soportadas (100G/100G) x 48	48
Número de tarjetas para tener 144x 100G ports	1	Número de tarjetas para tener 144x 100G ports	3
Costo de 400G-DR4 TX/RX	\$ 11,000	Costo de 100G-DR TX/RX	\$ 3,500
Inversion en Transceivers	\$ 396,000	Inversión en Transceivers	\$ 504,000
Ahorro	21%		

Costo

Beneficios del Rompimiento de Puertos

Se pueden obtener ahorros adicionales debido al uso de un menor número de chasises y tarjetas de red

Rompimiento de 40G a 4x10G Multimodo					
	Cantidad	Prec	io unitario	Pr	ecio total
Chassis	1	\$	100,000	\$	100,000
Tarjeta de red	8	\$	30,000	\$	240,000
Tx Rx	288	\$	1,000	\$	288,000
Por Puerto de 10G			\$	545	

10G Duplex Multimodo						
	Cantidad	Prec	io unitario	Pr	ecio total	
Chassis	3	\$	100,000	\$	300,000	
Tarjeta de red	24	\$	20,000	\$	480,000	
Tx Rx	1,152	\$	500	\$	576,000	
Por Puerto de 10G				\$	1,177	

Ahorro	54%
	UT /U

*Comparación de costos para 40G. El precio del chassis incluye la carcasa, fuentes de alimentación y sus cables, Controladora del sistema, ventiladores y módulos fabric

Beneficios del Rompimiento de Puertos

Comparación del Consumo de Potencia por Transceiver

Rompimiento de 40G a 4x10G Multimodo					
No. de Transceivers QSFP 40G-SR4	36				
Consumo de potencia por TX/RX (W)	1.5				
Consumo de potencia / Puerto 10G (W)	0.375				

Ahorro*	63 %

Rompimiento de 100G to 4x25G	Multimodo
No. de Transceivers QSFP 100G-SR4	36
Consumo de potencia por TX/RX (W)	3.5
Consumo de potencia / Puerto 25G (W)	0.875

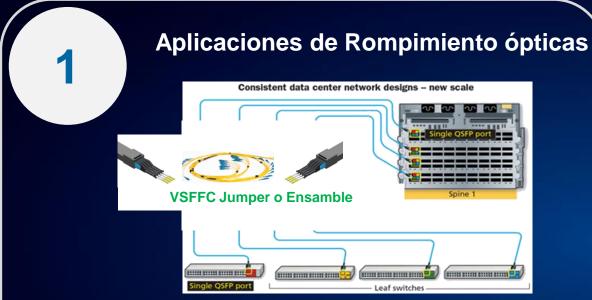
Ahorro*	42%
---------	-----

Rompimiento de 400G to 4x100G Mono-Modo		
36		
12		
3		

Ahorro*	33%

10G Duplex Multimod	0
No. de Transceivers SFP+ 10G-SR	48
Consumo de potencia por TX/RX (W)	1
Consumo de potencia / Puerto 10G (W)	1

25G Duplex Multimodo		
No. de Transceivers SFP+ 25G-SR	48	
Consumo de potencia por TX/RX (W)	1.5	
Consumo de potencia / Puerto 25G (W)	1.5	


100G Duplex Mono-Modo		
No. de Transceivers QSFP 100G-DR	48	
Consumo de potencia por TX/RX (W)	4.5	
Consumo de potencia / Puerto 100G (W)	4.5	

*Ahorros solo en transceiver individual para implementar el rompimiento de puertos. Se pueden calcular ahorros adicionales por la reducción del consumo de energía y el enfriamiento necesario debido al chasis y las tarjetas de red adicionales

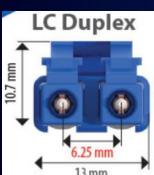
La Conectividad de Factor Muy Pequeño (VSFF) tiene dos opciones que lo impulsan

- Un conector duplex más pequeño puede ser usado para conectar las fibras del rompimiento directamente dentro de un nuevo disposiivo multi-canal Tx/Rx
- ¿Quién impulsa esta opción?
 - Hyperscala / Carriers

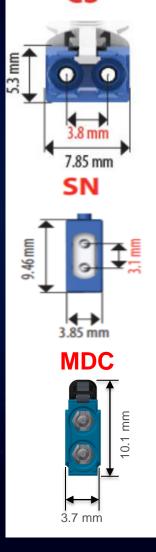
- ¿Qué requiere?
 - Transceivers VSFFC, jumpers VSFFC o troncales/ensambles VSFFC

2

Administración de fibras de mayor densidad


Imagen de: US Conec Website

- Conectores de factor de forma más pequeños pueden incrementar la densidad de 2 a 3 veces (hasta 432F)
- ¿Quién impulsa esta opción?
 - DC Empresariales/ Carriers
- ¿Qué requiere?
 - Jumpers VSFFC, módulos VSFFC, ODF's que soporten esta densidad



Los Nuevos Conectores VSFF que Liderean el Incremento de Densidad

Conector Corning-Senko CS

- 40% de menor tamaño que un conector LC Dúplex
- El doble de densidad en ODF's comparado con conectividad LC
- Excede el desempeño de los conectores LC (diseñado para transceivers de nueva generación a 200/400G)
- Diseño Unibota para cables entre 1.6mm y 2.0mm

Conector Senko SN

- Mucho menor tamaño comparado con un conector LC Dúplex
- Excede el desempeño de los conectores LC (diseñado para transceivers de nueva generación a 400G)
- Diseño Unibota para cables entre 1.6mm y 2.0mm

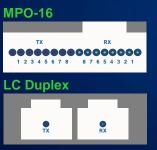
Conector US Conec MDC

- Mucho menor tamaño comparado con un conector LC Dúplex: 3x mayor densidad
- 3 conectores MDC Duplex se pueden alojar en un acoplador MDC (mismo tamaño que un acoplador LC)
- Excede el desempeño de los conectores LC (diseñado para transceivers de nueva generación a 400G)
- Diseño Unibota para cables entre 1.6mm y 2.0mm

Óptica a 400G y 800G con Opciones de Rompimiento llevan a Nuevos Conectores de Factor de Forma Muy Pequeños

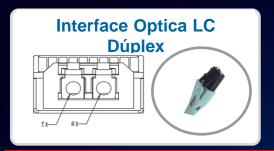
VSFFC Very Small Form Factor Connectors

Ejemplos potenciales de aplicaciones de rompimiento para 400G

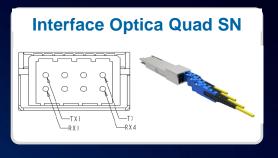


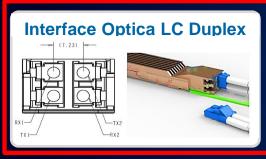
QSFP-DD

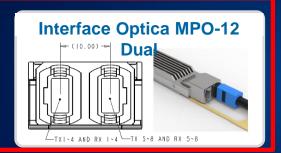
SFP-DD

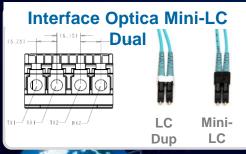


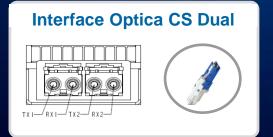
SFP-DD 2:1 (2X50G)




Interfaces Ópticas 800G OSFP – Publicado el 2 de Agosto, 2021 Las opciones de conectividad LC Dúplex y 12F MTP fueron las primeras en implementarse







"La mejor manera de predecir el futuro es crearlo"

Peter Drucker

