# BICSI ICT SUMMIT MEXICO2024

El futuro de ICT - Inteligencia Artificial, Convergencia y Sustentabilidad

### 24 DE ABRIL

Hotel Galería Plaza, San Jerónimo, Ciudad de Mexico.

ORGANIZA:

### LATAM RED

www.latamred.com

💼 Latam Red S.A. 🍙 🞯 latamred

# Five Best Practices You Need to Know About MPO Testing in Data Centers

Jesús Eduardo Reséndiz Flores

Application Engineer, Mexico / Central America / Caribbean





### AGENDA

**MPO Connectors** 

### Best practices for:

- 1. Inspection
- 2. OLTS testing
- 3. References
- 4. Polarity validation
- 5. End-to-end certification





# MPO CONNECTORS



EXFO



MPO 8, 12 & 24 connectors



MPO 16 & 32 connectors



Key is centered

Key is on the side



## Color coding – connectors

### Multimode connectors

- UPC (flat connectors)
- Connector outer housing is aqua bli (OM3)
- Other connector housing color exist depending on the fiber type

### Color coding – cables **Multimode cables** = aqua blue



### Singlemode connecto

- APC (angled connectc
- Connector outer hous green or yellow



### Singlemode cables = yellow







# INSPECTION



# Why is inspecting multi-fiber connectors even more important?







### What is a Fiber Inspection Probe ?

**FIP = Fiber Inspection Probe** Also called Fiber Inspection Scope

### **Definition:**

A FIP is a specialized microscope that :

- 1. Takes a picture of the small connector end-face,
- 2. Locates and measures all defect and scratches found on the connector end-face
- 3. Applies industry standard thresholds
- 4. Gives a clear Pass/Fail status on the quality of the connector end-face







# Optical connectors: the weakest point



### Connector inspection standards

Connector inspection standard-based criteria

FYFO

IEC 61300-3-35 Ed2 Core 0-25 µm Cladding FC 25-120 µm Pass/Fail is assessed according to IEC criteria Adhesive Defects Zones Scratches 120-130 µm A: Core None None No limit <2 µm No limit ≤3 µm Contact 5 from 2 – 5 µm B: Cladding None >3 µm 130-250 µm None >5 µm C: Adhesive No limit No limit Non critical D: Contact No limit None ≥10 µm zone 250+ µm



Ø

## MPO inspection results











### Inspection

### **Dust/dirt residue**

- Construction sites often carry dust from drywall, concrete or fine sand
- Residue can chip ferrules when mated and lead to permanent damage
- A dirty connector that could have been cleaned becomes damaged and must be replaced







## Inspection

### **MPO connectors**

- Come in various fiber configurations
- Various fiber count in rows: 8, 12, 16, etc
- Single or multiple rows: 1, 2, 4



Multiplies possibilities of a failing link/channel







Before plugging in the trunk cable, inspect the MPO connector on the cable and cassette















Source: IEC (2015) Part 3-35: Examinations and measurements –Visual inspection of fiber optic connectors and fiber-stub transceivers







# Inspecting LC connectors







### Inspecting LC connectors







## Inspecting LC connectors









# OPTICALLOSS TEST SET (OLTS) TESTING





## Tier-1 testing definition



### **TIA-568 : Optical Fiber Cabling and Components Standard**

- Testing installed optical fiber cabling for attenuation with an optical loss test set (OLTS), as described in cabling standards, and verifying the cabling length and polarity constitutes Tier 1 testing.
- An OLTS includes an optical power meter to measure received optical power and a light source that closely resembles a system transmitter (e.g., an LED for multimode optical links, a laser for single-mode optical links). An OLTS may be a single instrument or separable optical power meter and light source.













EVEN











### Moving to parallel optics

10G to 100/200/400G migration using existing trunk cabling



### Moving to parallel optics

Replace the cassette with 24F MPO to create 3 x 8F MPO links





### Inspect MPO connections







### Inspect MPO connections







## Tier 1 certification testing on MPO 8F



### Tier 1 certification testing on MPO 8F



### MPO power meter and light source for Tier-1 testing

### Testing with a MPO power meter and light source would provide:

- Insertion loss per channel
- Continuity validation
- Polarity type confirmation
- Fiber length







### MPO OLTS test results example



#### Main screen

- 1. P/F global status
- 2. Worst fiber loss
- 3. Length
- 4. 12-Fiber bar graph



#### FasTest details

- 1. Polarity validation
- 2. Fiber mapping
- 3. Loss thresholds

| ← Fibers    | details    |      |  |
|-------------|------------|------|--|
| Loss (dB)   |            |      |  |
| Fibers      | 1310       | 1550 |  |
| 1           | 1.89       | 1.89 |  |
| 2           | 2.13       | 2.13 |  |
| 3           | 2.98       | 2.98 |  |
| 4           | 1.56       | 1.56 |  |
| ÷.          | 6.56       | 6.56 |  |
| 7           | 2.09       | 2.09 |  |
| 6           | 1.89       | 1.89 |  |
| 8           | 2.13       | 2.13 |  |
| 9           | 1.56       | 1.56 |  |
| 10          | 2.98       | 2.98 |  |
| 11          | 6.56       | 6.56 |  |
| 12          | 2.09       | 2.09 |  |
| Show refere | nce values |      |  |

#### Fiber details

- 1. Individual fiber results
- 2. Loss/lambda/fiber



# REFERENCE METHODS FOR OLTS TESTING

MaxTester

## MPO reference assistant

- Reference is the main cause of error
- A bad reference will result in bad measurements
- An onboard reference assistant will ensure the reference is done correctly





### Reference methods

### As recommended in IEC 61280-4-5

- **One cord:** Includes both the first and last connections in the loss budget. Lowest uncertainty possible (less <u>connectors</u>)
- Adapter cord: Includes only the first or last connection in the loss budget. <u>To accommodate connector gender</u> vs. port on units.
- **Three cords:** *Excludes both the first and last* connections in the loss budget



















### Reference methods

#### As recommended in IEC 61280-4-5

• **1 cord:** Includes both the first and last connections in the loss budget.

• Adapter cord: Includes only the first or last connection in the loss budget.

• **3 cords:** Excludes both the first and last connections in the loss budget







# POLARITY VALIDATION

Des D

1.1



# 

# of MPO-cable users report that determining polarity type is confusing

- Navigating MPO waters: 2018 survey

### Polarity types





## MPO OLTS test & validation



#### ← Expected polarity

Unspecified ✓ Type A (Straight) Type B (Reversed) Type C (Cross pair) Type U (Universal System)



| ← FasTesT details                                                                 |  |  |  |  |
|-----------------------------------------------------------------------------------|--|--|--|--|
| Type A (Straight)<br>2022-07-05, 00:00:30                                         |  |  |  |  |
|                                                                                   |  |  |  |  |
| Over limit fibers mapping                                                         |  |  |  |  |
| Source<br>1 2 3 4 5 6 7 8 9 10 11 12<br>1 2 3 4 5 6 7 8 9 10 11 12<br>Power Meter |  |  |  |  |
| Loss                                                                              |  |  |  |  |
| 1310 2.65 dB Fiber 4                                                              |  |  |  |  |
| 0.00 2.00                                                                         |  |  |  |  |
| 1550 3.12 dB Fiber 4                                                              |  |  |  |  |
| 0.00 2.00                                                                         |  |  |  |  |

| ← Fibers details                                  |              |      |  |  |  |
|---------------------------------------------------|--------------|------|--|--|--|
| Loss (dB)                                         |              |      |  |  |  |
| Fibers                                            | 1310         | 1550 |  |  |  |
| 1                                                 | 0.22         | 1.88 |  |  |  |
| 2                                                 | 0.70         | 1.61 |  |  |  |
| 3                                                 | 0.00         | 1.37 |  |  |  |
| 4                                                 | 2.65         | 3.12 |  |  |  |
| 5                                                 | 0.05         | 0.74 |  |  |  |
| 6                                                 | 0.55         | 1.40 |  |  |  |
| 7                                                 | 0.08         | 0.95 |  |  |  |
| 8                                                 | 0.43         | 1.62 |  |  |  |
| 9                                                 | 0.89         | 1.69 |  |  |  |
| 10                                                | 0.07         | 0.72 |  |  |  |
| 11                                                | 0.59         | 1.66 |  |  |  |
| 12                                                | 0.10         | 1.24 |  |  |  |
| Show reference values                             |              |      |  |  |  |
| Thresholds                                        |              |      |  |  |  |
| Expected polarity: Type A (Straight)              |              |      |  |  |  |
| Fibers layout:                                    | 1x12 12 fibe | ers  |  |  |  |
|                                                   | •••••        | •••  |  |  |  |
| 1310 nm                                           |              |      |  |  |  |
| Minimum link                                      | loss: None   |      |  |  |  |
| Maximum link loss: 2.00 dB                        |              |      |  |  |  |
| 1550 nm                                           |              |      |  |  |  |
| Maximum link                                      | loss: None   |      |  |  |  |
|                                                   |              |      |  |  |  |
| Reference details                                 |              |      |  |  |  |
| 2022-07-04 23:56:22<br>Adapter-cord<br>Polarity A |              |      |  |  |  |



# OPTICAL TIME DOMAIN REFLECTOMETER (OTDR) TESTING

























| Selected files: 8/8, measurements: 8/8

# Different tools for fiber (link) testing







Self-reflections on the "certification" concept

• Let's assume a link with 4 connections (3 segments)



# OLTS pros/cons

### **S**trengths

- Automated IL+ORL+Length
- Fast

•

- Reference validation
- E2E Loss measurement + Polarity + continuity
  - Bidirectional or unidirectional

### **Ideal for certification**



### Weaknesses

- Needs referencing
- Cannot pinpoint faults
- No distributed loss







# Measuring loss with OTDR/IOLM

- The uncertainty of IL measurements with OTDRs is dependent of the **methodology** as well as the **analysis**:
  - Reflectometry vs. advanced reflectometry
  - Using a launch fiber
  - Using a launch and a receive fiber
  - Uni-directional or bi-directional
  - Central wavelength
  - BAD SETTINGS = false measurements



### OTDR vs iOLM

• Reflectometry: single pulse





Range (km Pulse Duration (s) Port/Fiber: 20 µs 3 ns 0.04 SM/9 µm 5 ns 85 0.3 180 10 . 10 µs X 1310 nm 40 0.5 • 30 ns 120 • 5 IIS • X 1550 nm 20 1.25 •50 ns qn 10 ٠ . 2.5 1 µs 100 ns . . 60 45 500 ns 275 ns





Advanced reflectometry: Adaptative multipulse acquisition with smart recognition and diagnostic of all elements





# End-to-end loss using the iOLM





# OTDR/iOLM pros/cons

### Ideal for characterization and Tier 2 certification

### **Strengths**

- No reference
- Accurate (E2E and events)
- Distributed loss measurement
- Mapping of event
- iOLM is fully automated
- E2E loss measurement + continuity using LF and RF
  - Bidir or unidirectional

FYFO



### Weaknesses

- Test time longer than OLTS
- Not Tier 1
- Traditional OTDR complexity



### **Definition of an OFM**



An optical fiber multimeter (OFM) is an essential handheld tool for fiber optic technicians, alike to well-known multimeters used for electrical circuits.

OFMs do quick measurements of multiple key optical parameters :

- loss (dB),
- optical return loss (dB),
- length (meters)
- power (dBm).

It helps technicians verify fiber optic link health, measure signal strength and troubleshoot potential issues.













# Optical fiber multimeter

- Enables quick link validation
- Simple interface adapted to various use cases
- Optimized test speed





# Optical fiber multimeter: pros/cons

Ideal for verification and fault tracking

### Strengths:

- Fast
- Fully automated
- No reference
- Accurate (E2E and faults)
- Basic link mapper
- Photometry and advanced reflectometry



### Weaknesses:

- Limited to 40 km
- Not designed to characterize a link, link map provides detectable elements and may miss small events





Recap

**MPO Connectors** 

### Best practices for:

- 1. Inspection
- 2. OLTS testing
- 3. References
- 4. Polarity validation
- 5. End-to-end certification





# THANK YOU



